go语言并发编程(五) ——Context

Context(上下文)

前言

Context是go语言中所提供的一种并发控制的解决方案,相比于管道与WaitGroup,Context可以更好的控制子孙协程以及层次更深的协程。Context本身是一个接口,只要我们实现了该接口都可以被称为上下文,context标准库本身也提供了几个实现:

  • emptyCtx
  • cancelCtx
  • timerCtx
  • valueCtx

什么是Context

在看Context的具体实现之前,先来看看Context接口的定义.

type Context interface{
	Deadline(deadline time.Time, ok bool)
	Done() <-chan struct{}
	Err() error
	Value(key any) any
}

我们来看一看这个接口里面所定义的四个方法:

  • Deadline
    该方法有两个返回值,deadline是截止时间,也就是上下文截止的时间,第二个值是是否设置dedline,如果没有则一直为false.
  • Done
    返回值是一个空结构体的只读管道,该管道仅仅起到通知作用,不传递任何数据,当上下文所做的工作要取消的时候,该通道就会被关闭,对于一些不支持取消的上下文,可能会返回nil
  • Err
    该方法会返回一个error,用来表示上下关闭的原因,如果管道没有关闭,则返回nil,如果关闭的话,则返回一个error,用来表示上下文关闭的原因。
  • Value
    该方法返回对应的键值,如果key不存在,或者不支持该方法,就会返回nil。

下面我们来看一个简单的例子:

package main

import (
	"context"
	"fmt"
	"sync"
	"time"
)

var wa sync.WaitGroup
var stop bool
var RW sync.RWMutex

func cpuIInfo(ctx context.Context) {
	defer wa.Done()
	for {
		select {
		case <-ctx.Done():
			fmt.Println("cpu info exit")
			return
		default:
			time.Sleep(2 * time.Second)
			fmt.Println("cpu info")
		}

	}
}

func main() {
	wa.Add(1)
	ctx, cancel := context.WithCancel(context.Background())
	go cpuIInfo(ctx)
	time.Sleep(6 * time.Second)
	cancel()
	fmt.Println("main exit")
	wa.Wait()
}

输出为:

cpu info
cpu info
main exit
cpu info
cpu info exit

或许现在你不是很清楚上面的例子,但是看完今天的博文以后,相信大家就能和好的理解了话不多说,让我们来看一下有关context的具体内容:

emptyCtx

顾名思义,emptyCtx指的就是空的上下文,context包下所有的实现其实都是不对外暴露的,所以我们无法直接创建context.Context,但是go语言提供了对应的函数区创建上下文,例如下面我们可以利用context.Background()context.TODO()函数来创建一个空的上下文:两个函数的具体实现如下:

var{
	background =new(emptyCtx)
	todo =new(emptyCtx)
}

func Background()Context{
	return background
}

func TODO()Context{
	return todo
}

我们再来看看emptyCtx四个函数的实现:

type  emptyCtx int

func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
return
}

func () Done() <-chan struct{} {
return nil
}

func () Value(key any) any {
return nil
}

func (emptyContext) Err() error {
return nil
}

我们仔细观察emptyCtx的实现,发现其实emptyCtx仅仅返回了emptyCtx指针.emptyCtx的底层类型是int,之所以不使用空结构体,在之前我们提到过空结构体没有字段,不占用内存,但是我们要求emptyCtx的实例都要有自己的内存地址,而在它的方法中,由于它不能被取消,所以它没有deadline,由于它不能被取值,所以它实现的方法都是返回nil.emptyCtx通常是用来当作最顶层的上下文,在创建其他三种上下文时作为父上下文传入。

valueCtx

valueCtx的实现比较简单,它的内部只包括一对键值对,和一个内嵌的Context字段:

type valueCtx struct{
	Context
	kay,value any
}

它自身也实现了Value方法,基本逻辑其实也很简单:找不到就去喊爸爸(去父上下文找):

func (c *valueCtx) Value(key any) any{
	if c.key==key{
		return c
	}
	return value(c.Context,key)
}

我们可以来看一个简单的例子:

package main

import (
	"context"
	"sync"
	"time"
)

var w sync.WaitGroup

func main() {
	w.Add(1)
	go Do(context.WithValue(context.Background(), 1, 2))
	w.Wait()
}

func Do(ctx context.Context) {
	ticker := time.NewTimer(2 * time.Second)
	defer w.Done()
	for {
		select {
		case <-ticker.C:
			println("time out")
			return
		case <-ctx.Done():
		default:
			println(ctx.Value(1).(int))
		}
		time.Sleep(100 * time.Millisecond)
	}
}

输出为:

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
time out

valueCtx多用于在多级协程中传递一些数据,无法被取消,因此ctx.Done永远会返回nil,select会忽略掉nil管道。

cancelCtx

cancelCtx以及timerCtx都实现了canceler接口,接口类型如下:

type canceler interface {
	// removeFromParent 表示是否从父上下文中删除自身
	// err 表示取消的原因
	cancel(removeFromParent bool, err, cause error)
	// Done 返回一个管道,用于通知取消的原因
	Done() <-chan struct{}
}

我们查看上面的源码可以看出来:cancel方法本身不对外暴露,但是会在我们创建上下文的时候通过闭包来将其封装成返回值供外界调用,这个在源码中也有所体现:

func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
	if parent==nil{
    panic("cannot create context from nil parent")
	}
	c:=newCancelCtx(parent)
	//尝试将自身添加进父级的children中
	propagateCancel(parent,&c)
	return &c,func(){
		c.cancel(true,context.Canceled,nil)
	}
}

cancelCtx我们可以理解为一个可取消的上下文,它在创建的时候如果父级实现了canceler,就会将自身添加进父级的children中,否则就一直向上查找。如果所有的父级都没有实现canceler,就会启动一个协程等待父级取消,然后当父级结束时取消当前上下文。当调用cancelFunc时,Done通道将会关闭,该上下文的任何子级也会随之取消,最后会将自身从父级中删除。下面我们来看个例子:

package main

import (
	"context"
	"fmt"
	"sync"
	"time"
)

var w sync.WaitGroup

func main() {
	bkg := context.Background()
	ctx, cancel := context.WithCancel(bkg)
	w.Add(1)
	go func(ctx2 context.Context) {
		defer w.Done()
		for {
			select {
			case <-ctx.Done():
				fmt.Println(ctx.Err())
				return
			default:
				fmt.Println("等待取消中...")
			}
			time.Sleep(time.Millisecond * 200)
		}

	}(ctx)
	time.Sleep(time.Second * 3)
	cancel()
	w.Wait()
}

输出为:

等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
等待取消中...
context canceled

timerCtx

相对于cancelCtx,timerCtx多了超时机制,context包下提供了两种创建的函数:

func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)

func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc)

这两个函数的功能类似,前者是指定一个具体的时间而后者则是指定一个时间间隔。timeCtx会在时间到期后自动取消上下文,取消的流程除了要额外的关闭timer之外,基本与cancelCtx一致,我们来看一个简单的示例:

package main

import (
	"context"
	"fmt"
	"sync"
	"time"
)

var w sync.WaitGroup

func main() {
	w.Add(1)
	deadline, ctx := context.WithDeadline(context.Background(), time.Now().Add(10*time.Second))
	defer ctx()
	go func(ctx2 context.Context) {
		defer w.Done()
		for {
			select {
			case <-deadline.Done():
				fmt.Println("上下文取消")
				return
			default:
				fmt.Println("等待取消")
			}
			time.Sleep(1 * time.Second)
		}
	}(deadline)
	w.Wait()
}

WithTimeout其实与WithDealine非常相似,它的实现也只是稍微封装了一下并调用WithDeadline,和上面例子中的WithDeadline用法一样,如下:

func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
	return WithDeadline(parent, time.Now().Add(timeout))
}

注意:
就跟内存分配后不回收会造成内存泄漏一样,上下文也是一种资源,如果创建了但从来不取消,一样会造成上下文泄露,所以最好避免此种情况的发生。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/547990.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

金三银四面试题(二十):单例模式知多少?

设计模式也是面试中的热门考题&#xff0c;基本这个部分都是问问你知不知道XXX设计模式&#xff0c;有什么用&#xff0c;优缺点&#xff0c;然后再现场手写一个demo。很多时候是和spring一起考的&#xff0c;问问你知不知道spring框架用了哪些设计模式。今天我们来先看看单例模…

信息系统项目管理师——成本管理计算专题(一)

常见考点如下: ①问项目预算、BAC、成本基准、应急储备、管理储备的含义及它们之间的区别 ②给出成本基准和管理储备求项目预算&#xff0c;或者给出预算求成本基准等等 ③看图找 PV、AC、EV、SV、CV、BAC、EAC、ETC等 ④根据题干求项目的PV、AC、EV、SV、CV、BAC、EAC、ETC等 …

骑行听音乐用什么运动耳机?五款宝藏机型汇总推荐

热爱骑行的你们&#xff0c;是否曾为选购一款合适的运动蓝牙耳机而纠结&#xff1f;市面上品牌众多、功能各异的运动耳机&#xff0c;究竟哪款才是你的运动良伴&#xff1f;今天&#xff0c;我就来聊聊运动蓝牙耳机的选购要点&#xff0c;并为你推荐几款高性价比的运动蓝牙耳机…

OMS系统集成案例分享:数环通轻松实现OMS系统对接

在数字化浪潮席卷全球的今天&#xff0c;订单管理系统&#xff08;OMS&#xff09;作为连接企业与客户的桥梁&#xff0c;正逐渐成为企业提升订单处理效率、优化客户体验的关键。然而&#xff0c;由于企业内部系统的复杂性和多样性&#xff0c;OMS系统与其他业务系统的集成往往…

OCR技术可以通过识别身份证区分性别么?

可以&#xff0c;只需将它识别成结构化的数据&#xff0c;然后根据性别进行筛选即可。具体操作方法如下&#xff1a; 1、到金鸣识别官网下载安装金鸣表格文字识别电脑客户端。 2、打开安装好的金鸣表格文字识别电脑客户端。 3、点击“添加文件”&#xff0c;在弹出的对话框中选…

【C语言回顾】数组

前言1. 数组2. 一维数组2.1 一维数组的创建2.2 一维数组的初始化2.3 一维数组的使用2.3.1 一维数组的下标2.3.2 一维数组的输入和输出 2.4 一维数组在内存中的存储 3. 二维数组3.1 二维数组的创建3.2 二维数组的初始化3.3 二维数组的使用3.3.1 二维数组的下标3.3.2 二维数组的输…

Lesson2: 算法的时间复杂度和空间复杂度

【本节目标】 1. 算法效率 2. 时间复杂度 3. 空间复杂度 4. 常见时间复杂度以及复杂度 oj 练习 1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢&#xff1f;比如对于以下斐波那契数列&#xff1a; long long Fib(int N) {if(N < 3)return 1;retu…

【模板】差分

本题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 题目&#xff1a; 样例&#xff1a; 输入 3 2 1 2 3 1 2 4 3 3 -2 输出 5 6 1 思路&#xff1a; 一直以来&#xff0c;我总是不太理解差分和树状数组操作区别。 现在摸了一下开始有所理解了。 差分和树状数组的区别…

houdini assemble connectivity partion

官方文档 *****分开打包 非连续物体 各部份 打组 操作 partion connectivity assemble 三个物体&#xff0c;每个物体内的点&#xff0c;面线连接在一起&#xff0c;但每个物体之间分离 connectivity 查看点面数据属性&#xff1a;在原有属性上的变化 connectivity 对将归…

如何优化邮箱Webhook API发送邮件的性能?

邮箱Webhook API发送邮件的流程&#xff1f;怎么用邮箱API发信&#xff1f; 高效、稳定的邮箱Webhook API发送邮件功能对于企业的日常运营至关重要。随着业务量的增长&#xff0c;如何优化邮箱Webhook API发送邮件的性能。AokSend将从多个方面探讨如何提升的效率。 邮箱Webho…

访问者模式【行为模式C++】

1.概述 访问者模式是一种行为设计模式&#xff0c; 它能将算法与其所作用的对象隔离开来。 访问者模式主要解决的是数据与算法的耦合问题&#xff0c;尤其是在数据结构比较稳定&#xff0c;而算法多变的情况下。为了不污染数据本身&#xff0c;访问者会将多种算法独立归档&…

画板探秘系列:创意画笔第一期

前言 我目前在维护一款功能强大的开源创意画板。这个画板集成了多种创意画笔&#xff0c;可以让用户体验到全新的绘画效果。无论是在移动端还是PC端&#xff0c;都能享受到较好的交互体验和效果展示。并且此项目拥有许多强大的辅助绘画功能&#xff0c;包括但不限于前进后退、…

抖音24年4月16新规发布,“有效粉丝”少于500无法带货!

我是王路飞。 2024年4月16日&#xff0c;抖音发布了堪称今年“最严新规”。 调整了个人号视频/图文电商带货权限&#xff0c;个人号开通视频/图文的商品推广要求&#xff0c;粉丝要求从“粉丝量>1000”调整为"有效粉丝量>500"。 看似对粉丝数量的要求减少了…

Dynamics 365: 给D365设置一个黑色主题

在领英上看到一个好玩的东西&#xff0c;给D365可以设置暗黑的主题&#xff0c;但是这个目前我试了一下&#xff0c;仍然需要适配&#xff0c;很多地方显示的还是白色的&#xff0c;比如dashbaord里。 具体设置方法&#xff1a; 1. 设置你的D365为New Look新外观 2. 在D365的…

van-uploader 在app内嵌的webview中的一些坑

问题&#xff1a; 部分版本在ios 中没有问题&#xff0c;但是安卓中不触发图片选择和拍照&#xff08;之前是可以的&#xff0c;可能是没有锁定版本&#xff0c;重新发版导致的&#xff09;。在ios中下拉文案是英文&#xff0c;html配置lang等于 zh 也没有用&#xff0c;ios里…

护眼灯什么价位的好?五款性价比高的学生用台灯推荐!

在为学生选择护眼灯时&#xff0c;价格与性价比常常是家长们考虑的重点。价格并非唯一标准&#xff0c;但合适的价位确实能够让我们找到性价比高的产品。今天&#xff0c;我将为大家推荐五款特别适合学生使用的台灯&#xff0c;它们不仅价格适中&#xff0c;而且性能优越&#…

Windows电脑使用Everything+cpolar搭建在线资料库并实现无公网IP管理文件

文章目录 推荐前言1.软件安装完成后&#xff0c;打开Everything2.登录cpolar官网 设置空白数据隧道3.将空白数据隧道与本地Everything软件结合起来总结 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家…

【办公类-21-15】 20240410三级育婴师 712道单选题(题目与答案合并word)

作品展示 背景需求&#xff1a; 前文将APP题库里的育婴师题目下载到EXCEL&#xff0c;并进行手动整理 【办公类-21-13】 2024045三级育婴师 721道单选题 UIBOT下载整理-CSDN博客文章浏览阅读451次&#xff0c;点赞10次&#xff0c;收藏3次。【办公类-21-13】 2024045三级育婴…

【学习】软件信创测试中,如何做好兼容性适配

在软件信创测试的领域中&#xff0c;兼容性适配是至关重要的一环。如何确保软件在不同的操作系统、硬件设备和软件环境中稳定运行&#xff0c;是每个测试人员需要面对的挑战。本文将从几个方面探讨如何做好兼容性适配&#xff0c;以提高软件的稳定性和用户体验。 首先&#xf…

STM32学习和实践笔记(12):蜂鸣器实验

蜂鸣器主要分为两种&#xff0c;一种是压电式的无源蜂鸣器&#xff0c;一种是电磁式的有源蜂鸣器。 有源和无源是指其内部有没有振荡器。 无源的没有内部振荡器&#xff0c;需要输入1.5-5KHZ的音频信号来驱动压电蜂鸣片发声。 有源的内部有振荡器&#xff0c;因此只需要供给…
最新文章